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Symmetrical Cases of Simultaneous X-ray Diffraction and the Borrmann Effect. I. 
The Analysis of Photoelectric Absorption 
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The strong enhancement of the anomalous transmission (Borrmann) effect in the symmetrical cases of 
simultaneous diffraction of three, four and six waves is considered. The analytical solution of the dif- 
fraction problem has been obtained when the Bragg conditions are satisfied exactly. The effect of the 
suppression of photoelectric absorption is investigated with consideration of both dipole and quadrupole 
interactions. 

I. Introduction 

Eleven years ago Borrmann & Hartwig (1965) dis- 
covered the new effect that anomalous transmission 
is strongly enhanced when the incident beam of X-rays 
is diffracted on two systems of planes of the germanium 
crystal, (111) and (11i), simultaneously as compared 
with the case of diffraction on the system of planes 
(111) only. This paper stimulated interest in the dynam- 
ical theory of simultaneous X-ray diffraction. The 
detailed theoretical analysis of the case investigated by 
Borrmann & Hartwig (1965) was done by Hildebrandt 
(1967). It turned out that the wave field formed in the 
crystal by three-wave diffraction was such that the 
points of minimum energy density coincided with the 
atomic equilibrium positions. In the two-wave case of 
diffraction by the system of planes (111) the ratio of 
the local energy of the field to a mean value at a node 
of the crystal lattice is ( 1 -  1/]/2) and therefore con- 
siderable interaction between the field of X-rays and 
the atomic electrons takes place. 

Later, anomalous-transmission enhancement of this 
type was observed time and again by other authors. 
The more interesting question is, however, the enhance- 
ment of the anomalous-transmission effect as com- 
pared with the two-wave case for planes (220) when 
the wave field formed has nodes just at the crystal 
lattice sites. The attempts to discover this effect by 
means of experimental methods gave no positive re- 
sults for a long time. However, Joko & Fukuhara 
(1967) had shown theoretically that in the symmetrical 
four-wave and, particulary, six-wave cases this en- 
hancement must exist. An attempt to directly confirm 
the Joko & Fukuhara (1967) result had been under- 
taken by Huang, Tillinger & Post (1973), however, 
without success. The first qualitative confirmation of 
the theory had been obtained, apparently, by Kshevet- 
skii & Myhailjuk (1976). 

In this paper we give a more detailed analysis than 
Joko & Fukuhara  (1967) of the Borrmann effect in 
the symmetrical cases of simultaneous diffraction. For 
the sake of simplicity we restrict our treatment to the 

case of photoelectric absorption, which is the main con- 
tribution to the normal absorption coefficient #0. An 
analysis of the absorption due to thermal and Compton 
scattering processes will be given in a separate paper. 

II. Formulation and solution of the diffraction 
problem 

To describe the electromagnetic field of X-rays inside 
a crystal, we use Maxwell's equations. In terms of 
space and time Fourier components of the electrical 
field vector, E(k, co), 

4ni~ 
(kZ-,¢Z)E(k, w) -k [kE(k ,  ~ ) ] =  ~ j ( k ,  w) (2.1) 

where ~:=m/c, c is the light velocity, j(k, 09) is the 
Fourier component of the current density, which in 
fact is a quantum-mechanical average of the Fourier 
component of the current-density operator. In the 
linear approximation in E, taking into account the 
periodicity of the crystal lattice, we have 

4ni~o 
c2 ji(k, 09)= K 2 ~ Z//(k, kin)El(kin, co) (2.2) 

m 

where k,, = k + hm, h,, is 2n times the reciprocal-lattice 
vector, )(/(k, kl) is 4n times the Fourier component of 
the polarizability tensor of the crystal. 

The expression for )(t(k, kl), which takes into ac- 
count all possible interactions between the X-rays and 
the crystal, has been obtained by Afanas'ev & Kagan 
(1968). The real part of the polarizability is determined 
mainly by the Thomson scattering of X-rays by the 
electrons of the atoms. It has the form: 

Z~Z(k - kl) = - b iz 4nro 
z¢2~o 

x ~ exp [ - i ( k - k l ) Q j ] J ~ ( k - k ~ ) e x p  [ - W j ( k -  k~)-I. 

(2.3) 

Here the summation is over all the atoms in the unit 
cell of a crystal, exp ( -Wj)  and J) are the Debye- 
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Waller factor and the Fourier component of the elec- 
tron density (form factor) ofthej  atom, Q0 is the volume 
of a unit cell, ro = eZ/mc z. 

To calculate the photoelectric-absorption contribu- 
tion to the imaginary part of the polarizability one 
usually uses the multipole series (Hildebrandt, Ste- 
phenson & Wagenfeld, 1973). It is enough to retain 
only the dipole and quadrupole terms because the re- 
maining terms are small; then we have 

Xi'(k, k~)= z ? ( k -  k~)6 u 

+)~?(k_ kl) I3u (kkt) kl kv ] 
Jr- /£2 J (2.4) 

where 

1 
)~'Q(k)= ~oo ~ exp (-ikQj)a})'Q exp [ -  Wj(k)] (2.5) 

and o-~' Q are the cross-sections of dipole and quadru- 
pole photoabsorptions of the atom j. The dipole term 
of the imaginary part of the polarizability as well as 
the real part is diagonal in the vector indices. It is 
convenient to introduce the complex quantity Z°=  
Zr° + iz~, where Z~ is defined by (2.3). We note that for 
X-rays 

zr Iz~°l>>[x~l. (2.6) 

Let us consider the usual case where the plane wave 
with wave vector ~ falls on a crystal in the form of a 
plate. The crystal is cut and orientated in such a way 
that the Bragg condition, (K + h,,)2 =/£2, is satisfied for 
the several reciprocal lattice vectors simultaneously. 
Let these vectors lie in the same plane, which is par- 
allel to the entrance surface of a crystal, and form a 
regular polygon. In a crystal of cubic symmetry, re- 
ciprocal-lattice vector combinations in the form of an 
equilateral triangle, a square and a regular hexagon 
can occur with the number of strong waves, N, equal 
to 3, 4 and 6. At a vacuum-crystal boundary the plane 
wave is refracted and the vector K is transformed by 
ko =K +/£~ono/cos 0; where no is the inner normal to 
the entrance surface of the plate, cos 0=(Smno), Sm is 
the unit vector parallel to km=ko+h, ,  and eo is a 
small quantity of the order of Z; the imaginary part 
of which determines the interference absorption coef- 
ficient along vector K: 

/~(m= 2/£eoi. (2.7) 

After the substitution of (2.2) in (2.1) we retain 
only strong waves and obtain the set of N vector equa- 
tions. Generally speaking, the transverse character of 
X-rays inside the crystal is not conserved. However, 
the longitudinal components are a factor of X ,-~ 10 -5 
smaller than the transverse ones, and they may be 
neglected. Let us introduce, following Joko & Fuku- 
hara (1967), unit vectors of polarization, era, and era,, 
which form together with s,, a right-handed system of 

orthogonal directions for each reciprocal point m. The 
vectors em~ lie in the same plane as the vectors hm 
and (em~no)< 0. Expanding each vector E(km) in terms 
of the polarization vectors, 

E(km) = Em~em~ + Emperor, (2.8) 

it is easy to obtain the set of linear homogeneous equa- 
tions for amplitude Eros, s = re, a, in the form: 

Z g~'nEns'=eoEm~ (2.9) 
?IS' 

where 

g~'~=½{zn(hm-n)(emsens,) 

+ iziQ(hm-n)[(emsens')(SmSn) 

+(emsSn)(ens'Sm)]} . (2.10) 

Thus the interference absorption coefficients (2.7) 
and the shape of the electric field inside the crystal 
are determined from the solution of the eigenvalue 
problem of the scattering matrix ss' gmn. 

We note that the condition exp (ih,,Qj) = 1 is satisfied 
for all atoms j in the unit cell and all the reciprocal- 
lattice vectors hm in the symmetrical cases. Then the 
scattering matrix has such symmetrical properties as 
the many-wave pyramid. It is easy to obtain the general 
form of its eigenvectors from analysis of the symme- 
trical properties of the pyramid. 

Considering index m as the integer variable, we 
easily find that the substitution re ' - -m+ 1 instead of 
m is equivalent to the rotation of the reciprocal-lattice 
vector polygon by an angle 2reiN. The substitution 
m ' = m + N  instead of m leads to the identical trans- 
formation of the polygon. Therefore we have the cyclic 
condition Era+N, s=Ems for the amplitudes E,,s and 
its linear independent solutions read 

where n is the integer divisor of N--3,4,  6. 
The index s takes two values and, consequently, the 

amplitudes Em~ can be formally represented as four 
combinations of sines and cosines. To choose the 
correct ones we consider the refraction transforma- 
tion in the plane x, which is perpendicular to the plane 
of the reciprocal-lattice vectors and coincides with the 
point o and the centre of the circumscribed circle. Then 
the projection of the electric-field vector on the plane 
at the lattice sites, 

E x ~ ~ (Em,e~, + E,,,~e~,,), 
m 

either does not change or changes sign. On the other 
hand this operation is equivalent to the substitution 

X X X m ' = N - m  instead of m. Because em',~=em,, em '~=-  
e,~o, the amplitudes must have analogous properties. 
Consequently only the following combinations are 
possible: 
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(m0: E,,,,~=Acos(~--~m), E,,,,,=-Bsin(2--~nm) 

(no-): E,,,,~=Asin(~-~-m), E,,,,~=Bcos(~--~m) 

(2.11) 

and only the coefficients A and B remain undeter- 
mined. In fact, it is enough to determine only the ratio 
A/B because the coefficients can then be determined 
from the normalization condition. 

It is easily found that for the solution (nrc) with 
n - - N  all the o- components of the field are equal to 
zero, and the rc components are equal to one another. 
When n = N/2 (if N is even) all the 00 components also 
are zero, and the n components in turn change sign 
(antisymmetrical solution). In these cases A = 1/]//N. 
Similarly with the solutions (na) with n = N, N/2 where 
B--1/ ] /N.  All these solutions correspond to a non- 
degenerate eigenvalue Co, which is obtained after sub- 
stitution of (2.11) into any equation of the set (2.9). 
On the other hand, the solutions (nn) and (n00) for 
n # N, N/2 correspond to a doubly degenerate eigen- 
value because the symmetry transformation equalizes 
them. On substituting any solution (2.1 1) in any two 
equations of the set (2.9), we obtain the set of two 
linear equations for finding e0 and A/B. Here there 
are two values for e0 for a given value n, which we 
shall mark by (nn,00+_). It is convenient to use the 
following expressions for the coefficients A and B of 
this solution: 

Ze_ B = x/-~--2N 1 (2.12) 
A + = -  ] / ( l + Z 2 ) ,  _+ ~ l / ( l + Z Z - + )  

where Z+ =~-I-],/(1 +~2), and the quantity ~ is deter- 
mined from the set simultaneous with 8o. 

Taking into consideration the inequality (2.6), we 
can use only the real part of the scattering matrix to 
find ~ and 8or so that the eigenvectors are real. After 
that, the interference absorption coefficients are deter- 
mined by the formula, to the term in first-order, of 
the perturbation theory" 

~ ( J ) =  2x ~ E (j)~ss' ~z'(j) r, sm,,ir-.,s' (2.13) 
mS 
nS' 

where index j numbers the excitation branches, and 
E(~ are eigenvectors of the real part of the scattering 
matrix. They differ from eigenvectors of the general 
matrix (2.10) only by the value of the quantities A 
and B. For the nondegenerate eigenvalues, the eigen- 
vectors of the real and imaginary parts of the scattering 
matrix coincide and (2.13) is exact. We note that 
equation (2.1 3) for the degenerate eigenvalue is correct 
because the degeneracy is connected with the sym- 
metry properties of the matrix ~' g,,,n~, and the matrix 

ss' g,,,~ which has the same symmetry properties does not 
remove this degeneracy. Then, for the calculation 
of the higher-order terms, the degenerate eigenvalues 
are not considered. 

Formula (2.13) is convenient because it allows one 
to separate the various processes which contribute to 
the X-ray absorption coefficient and to make a com- 
parative estimation of these contributions. As is 
known, the normal absorption coefficient #o is deter- 
mined by inelastic processes of the following type: 
photoelectric dipole D, photoelectric quadrupole Q, 
thermal diffuse scattering (inelastic scattering by pho- 
nons) TDS and Compton scattering CS: 

/20 = Z ,  uP, P =  D, Q, TDS, CS.  
P 

The multiple-interference absorption coefficient, ac- 
cording to (2.1 3), can be also written as the sum of the 
contributions from the different processes: 

(9 
It should be noted that the ratio P/#o for the dif- 
ferent inelastic processes can differ considerably. 

The analysis of pD/#g is the most important because 
the dipole term of the photoelectric absorption is the 
overwhelming contribution to #0. In this case the 
.problem may be simplified essentially. Indeed, taking 
into consideration that the real and imaginary parts of 
the scattering matrix have in this case the same polar- 
ization dependence, we can replace the quantities f f  by 
Z o = i f + i f f  in the formulae for 2~o~ and then retain 
only the first two terms in the power series in i. The 
first term determines 28or and the second, divided by 
Zg¢, gives the necessary ratio. 

In considering the symmetrical cases the dipole part 
of the Fourier components of the crystal polarizability 
depends only on the modulus of the reciprocal-lattice 
vector. Let us denote them by Z,, (without symbol D) 
in the order of increase of the modulus of the reciprocal- 
lattice vectors. The direct calculations give the fol- 
lowing results. For N = 3 (an equilateral triangle): 

28~)= 

,~o-Z~ +3Z1 sin 2 0 

g o - Z 1  

Zo+½Z1E1-3Z_+ cos 0] 

sin / 0 
- 2 cos 0 

(3x) 

(30 ° ) 

(lrc, o-+).  

(2.14) 

For N = 4 (a square): 

)(0--)(2 + 2 E Z 2 _ Z 1 ]  sin 2 0 

ZO --Z2 

28~04)= Z0+Z2-2z1Z+  cos 0 

sin / 0 Z2 
- 2 cos 0 Z1 

For N- -6  (a regular hexagon): 

(472) 
(2r0 
(400), (2o-) 

(2.15) 

(1re, a + ) .  
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28(06) = 

;(o 't-- ; (1-  Z2 -T ;(3 + sin 20[q-;(1 +3;(2+2;(3] (6n) 
- - ~ (3n) 

ZO -I'- Z1 - -Z2 -T-- ;(3 

;(o - ;(3 -~(Z1 - ;(2)[ 1 + 3Z _+ cos 0] 

sin 2 0 ~1+3; (2-4 ; (3)  
4 -  6 cos 0 (;(1 --;(2) 

;(0-'[-;(3-at-~}(;(1 +;(2)E1-3Z+ cos O] 

sin 2 0 (4;(3 nt-3;(2--;(1) 
4 - - - -  6 cos 0 (;(1 +;(2) 

(6a) 
(3a) 

(2n, a___) 

(Is, a + ) .  

(2.16) 

We note that (2.14)-(2.16) differ in the form of entry 
from the corresponding formulae in the paper of 
Joko & Fukuhara  (1967). However, one can directly 
satisfy oneself that the formulae of Joko & Fukuhara  
(1967) for the eigenvalues of a dipole matrix can be 
identically transformed to the form (2.14)-(2.16) which 
is more convenient for analysis. 

The complete field of X-rays in a crystal has the 
form 

E(r) = y'  2j exp (ik~)r) ~ EU~ems exp (ihmr) (2.17) 
j m s  

where 2j is the excitement coefficient determined from 
the boundary conditions. The eigenvectors (2.11) are 
orthonormalized in the following way: 

Z Df~EC2; ) =6jj,. (2.18) 
m s  

Taking this into account and assuming that the ampli- 
tude of the incident wave is equal to unity, one easily 
obtains 

,.,, K ' ( J )  ± ,.,., ls?(J) J.j = COS w~o,~T sin v,~o, (2.19) 

where q~ is the angle between the polarization plane 
of the incident wave and the vector eo,~. Therefore the 
K-polarized incident wave excited only (nn) solutions 
with the factor A, and the a-polarized wave excites 
only (na) solutions with the factor B. In the limit of 
small scattering angles sin 0 ~ 0 and for the standard 
polarization only half the solutions are excited si- 
multaneously in the crystal with the factor I/~/N. 

I I I .  A n a l y s i s  o f  t h e  a n o m a l o u s  t r a n s m i s s i o n  e f f e c t  

Let us consider, for the sake of simplicity, a crystal 
with atoms of the same type (e.g. germanium or silicon). 
In this case, as is seen from (2.3) and (2.5), the quantities 
;(m are 

fm exp (-- W,,), ;(~ Q=Zo°i Q exp (-- Win) (3.1) Zmr = ;(Or "~- 

where fm and exp ( -  Wm) are the form factor and the 
Debye-Waller factor for the scattering with the re- 
ciprocal-lattice vector hm, Z is the number of electrons. 

The symmetrical three-wave case is considered by 
many authors (Joko & Fukuhara,  1967; Saccocio & 
Zajac, 1965; Penning, 1968; Kohn, 1975). In this case 
the formula (2.14) for nondegenerate solutions can be 
transformed into the form 

(ln, a + ) :  Z + -  1 28(03)=Z0_;( 1 
COS 0 ' 

(ln, a - ) :  Z_ = - c o s  0, 2e(03)=Z0+2;(1-:}Zl sinE 0 

(3.2) 

from which it follows that eigenvalues (ln, a + )  and 
(3a) coincide accidentally. The minimum of the ratio 
#o/#o is determined just by these solutions and is 

p(m3~n=#0[l--exp (-- Wa)]~-#oWl=poB(T)hZa (3.3) 

where B(T)=O'5(u 2) is the factor which determines 
the temperature dependence and equals one half of 
the mean square displacement of atoms from their 
equilibrium positions. Consequently, in the three- 
wave case the dipole part of the photoabsorption is 
as in the two-wave case for a-polarization and, roughly 
speaking, decreases by a factor W1. 

Let us consider the four-wave case. As follows from 
(2.15), the eigenvalues (4a) and (2a) are accidentally 
degenerate. Their absorption coefficient is equal to 
that of the two-wave case, along the reciprocal-lattice 
vector h 2 which corresponds to the diagonal of a 
square. The absorption coefficient for the (2n) solu- 
tion is always less than for (2a), and for (4n) it depends 
strongly on the parameter sin O=2R/2n where 2 is 
the wavelength of the radiation and R is the radius of 
the circumscribed circle of the reciprocal-lattice vector 
polygon. Among the degenerate solutions, (ln, a + )  is 
the most interesting one. Let us consider the limit of 
small scattering angles where sin 0,~ 1, i.e. 2 ~ a, where 
a is the crystal lattice parameter. We express 2eo in 
the form of a power series in sin 2 0 and take the imagi- 
nary part. Then we express the individual order terms 
as power series in W1 and restrict ourselves to the 
first term in this series. Taking into consideration that 
h 2 corresponds to the diagonal of a square and equa- 
tion (3.3), we have the relation Wz =214'1. As a result 
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#~!n~-#o [W21+ Wl sin2 0+¼(1- -~l )sin* O+ . . . ] • 

(3.4) 

Thus, in the limit of small scattering angles the ab- 
sorption coefficient decreases by a factor W~, and it is 
less essential than in the two-wave case. The new 
feature of this effect as compared with the two-wave 
case is the strong dependence on the scattering angle. 
If 0 > 1/I4/1 then the second term in (3.4) becomes larger 
than the first and the effect grows gradually weak. 
We note that the absorption coefficient for the (2re) 
eigenvalue is near (4o-) and (20-) in this case. 

The other limiting case is a coplanar case where 
all the wave vectors lie in the plane of the reciprocal- 
lattice vectors and 0 = re/2. In this case # for the (1 rt, a + ) 
eigenvalue is near (4a, 20"). The minimum absorption 
coefficient corresponds to the (2re) solution and is 

( 4 )  2 #min"~#0[Wl -Jr- 2W, cos 2 0 + . . . ] .  (3.5) 

Therefore in this limiting case one also has a decrease 
ofp by the factor W~ in a narrow region of angles z~/2 > 
o>rc/2-V(0.5 w1). We note that a very narrow in- 
terval of wavelengths corresponds to this region be- 
cause sin 0 varies slightly for 0 near re/2. 

In a six-wave case there are three different values 
for the moduli of the reciprocal-lattice vectors, and 
h~ = 3h~, h32 = 4h~. Such relations exist for W quantities. 
The analysis of the nondegenerate roots is elementary. 
Expanding exponents in a power series in 14,'1, we ob- 
tain. 

6114/1 +sin 2 0 + . . . ]  (6re) 

#(6) 3W 2' cos 2 0 + 2 W  3 - 8 W  3 cos 2 0 + . . .  (3re) 

~o 6Wl + . . .  (6or) 

3 W ~ + . . .  (3a) 

(3.6) 

In the limit of small scattering angles the values of 
# for rc and o- solutions, as expected, coincide. It fol- 
lows from (3.6) that the (30") eigenvalue results in the 
decrease of # by a factor 3W, 2, i.e. a factor 314/1 less 
than in a two-wave case, independent of the scattering 
angle. However, the minimum value of/~ corresponds 
to the (3re) solution for 0 near to re/2. In this case # 
decreases by a factor 2W3,. 

The (2re, o-+) eigenvalue among the degenerate so- 
lutions is the most interesting one. In the small 
scattering angle limit, expanding as for the derivation 
of (3.4), we obtain 

(6) 3 3 2 #min---~#o[2W1 + ~ W  i s in  2 0 + . . . ] .  (3.7) 

Hence, for small scattering angles the absorption coef- 
ficient decreases as compared with #o as strongly as 
in the coplanar case, but for a different type of elec- 

t romagnet ic  field. We note that there is here a very 
strong suppression of the dipole part of a photoab- 
sorption. So for a Ge crystal and the 220 reflexion 
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the quantity W1 is 0.0356 for T = 300 K. Therefore, in 
this case a decrease ofp by a factor 2W 3 =0-905 x 10 -4 
is equivalent to an increase of the crystal thickness 
accessible to X-rays, by approximately 10 4 times. How- 
ever, the complete analysis of the Borrmann effect 
needs a calculation of the other absorption mecha- 
nisms, in particular, quadrupole absorption. 

Before passing on to the analysis of the quadrupole 
part of photoabsorption, we make clear the physical 
mechanism of the suppression of a dipole interaction. 
As is known, in the two-wave case the decrease of 
absorption arises as a result of the formation in the 
crystal of a standing wave, the nodes of which just 
coincide with the sites of a crystal lattice. In the dipole 
case the atoms are approximated by point dipoles. 

A A 

Iio 

000 

-iP 0"1 

I'0 

2"0 max 

1"0 

0"I 

(a) (b) 
Fig. 1. The X-ray energy density between the atoms of a crystal in 

the six-wave case for Ag Kc~-radiation and (2n, a +)  eigenvector. 
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5 x 1 0  - t"  
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5x  10-2- 

1 0 - 2 "  

5 x 1 0  -3- 

10-3- 

AgK~ MoK~ CuK~ CrK~ 
[0.2[ 0.4 [ 0i6 0.8 Sin 0 

! : { 1 { ! ~ ; ~-  

(17t, a - )  

J 

" (4a) (2a) 

u°/po° 

Fig. 2. The ratio/~/P0 for the D process for the four-wave case m ger- 
manium (on a logarithmic scale). 
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The absorption would disappear if the thermal vibra- 
tions were absent. Actually, owing to thermal vibra- 
tions, the interaction between the electrons of the 

10 
5- (In, a - )  

1- 

5x 10 -1- 

10-2 

5 X 10 -3. n,a+) 
| 

10- 3 J( ~Q/~ 

AgKa MoK~ CuK~ CrK~ 
10.210;4 10;6 0"8 Sin0 

' 1 I I t .... Jl ~ 

1 0 - 1  

5xlO -2 

Fig. 3. The ratio P/Po for the Q process for the four-wave case in 
germanium (on a logarithmic scale). 

AgKa MoK~ CuK~ 

02]  t014 0.6 108 Sin0 10 z ; t ~ l t i I 

5 (In, a - )  

5x 10 -l" 
(6a) 

1 0 -  t .  ( 2 n ~  

5xlO -2- 

10-2- 

5 x 10- 3. (3a) 

103L 
1 

10- 4 - ~ . . f  

Fig. 4. The ratio P/#o for the D process for the six-wave case m ger- 
manium (on a logarithmic scale). 

atoms and the electric field nevertheless occurs, but 
with less intensity than for a plane wave where the 
energy density distributes uniformly over all the crys- 
tal. Expanding the space dependence of the field at 
the lattice sites in a Taylor series and considering that 
the first derivatives do not equal zero, one easily ob- 
tains after averaging over the thermal vibrations that 
p ,-~ (u 2) ~ W in this case. 

A different character of interaction between the 
electrons of the atoms and the field arises when the 
first derivatives of the field amplitude are equal to 
zero at the lattice sites. In this case the Taylor ex- 
pansion at a site begins with U 2, and/~--~ (u 4) ~ W 2. 
This type of electric-field structure arises in several 
excitation modes of four-wave and six-wave cases. It 
can be directly verified with the formulae (2.11), (2.15), 
(2.16). Analogously, when ¢t~,W 3, the tensor of the 
second derivatives of the field amplitude is also equal 
to zero at the crystal lattice site. 

Fig. 1 shows the lines of equal energy density be- 
tween the atoms, divided by the value integrated over 
all the unit cell, for a regular hexagon with a (220) 
face in germanium. The calculation was done for 
A g K a  radiation (/l=0.559 A), T = 3 0 0  K and a 
(2n, a + )  eigenvector. As seen from the figure, the space 
dependence of the field is characterized by the point 
symmetry of the lattice in the ( l i l )  plane with narrow 
and high maxima just between the atoms and rather 
wide regions of weak field near the lattice sites. The 
radius of the black circles is V(u2) .  Fig. l(b) shows, 
for the sake of comparison, the space dependence 
(along the [110] direction) for the 220, two-wave case 
and a polarization. We note that the form of the mini- 
mum, narrow valleys connecting the atoms of the tri- 
angular lattice, is typical for the degenerate solutions 
and wavelengths which correspond to weak absorp- 
tion. For nondegenerate solutions (3a), (3n) the lines 
have a different character, i.e. close hexagons envelop- 
ing the minimum region [see the figure in Huang, 
Tillinger & Post (1973)]. 

The calculation of the ratio #/#o for quadrupole 
photoabsorption can be done with (2.13). One also 
easily obtains the analytical expressions connecting 
the ratio #/#0 with the quantities Zm, ~ and sin 0. 
However, for the degenerate solutions these formulae 
are very cumbersome and we do not give them here. 
We note only two circumstances. 

The first is that in the limit sin 0 = 0 all the vectors 
Sm are equal to one another, i.e. (sins,)= 1, and em~ is 
perpendicular to Sn. Then, as seen from (2.10), the 
quadrupole polarization matrix coincides with a dipole 
matrix and also the ratios P/Po for the D and Q pro- 
cesses coincide. Thus, in this region of angles sup- 
pression of the quadrupole photoabsorption takes 
place as strongly as the dipole suppression. It may be 
noticed that this conclusion is correct also for higher- 
order multipoles. 

The second circumstance is that in accordance with 
(2.10) and (2.13) the ratio #Q/g~ is proportional to the 
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Fig. 5. The ratio/~/tto for the Q process for the six-wave case in ger- 
manium (on a logarithmic scale). 

product i k snEm, where i, k are the vector indices. In real 
space these products correspond to the first deriva- 
tives of the field amplitude. Expanding the space de- 
pendence of the field energy density at a lattice site 
an the general case, one easily concludes that the first 
term of the expression for/~e/ /~ as a power series in 
W has an index less by one than for the dipole interac- 
tion, analogous to the two-wave case. Because the 
ratio ae/a  D for X-rays is less, precisely speaking, than 
W1, the calculation of/~e does not indicate disorder 
of the Borrmann effect of any power. 

Figs. 2-5 show the calculated dependence of the 
ratio/z/#0 on sin 0 for D and Q processes (on a loga- 
rithmic scale) for the four-wave and six-wave cases 
with the (220) face in germanium and T = 300 K. The 
constant B in this case is 0.00362 A 2 [To=290°K ac- 
cording to Batterman & Chipman (1962)]. The form- 
factor values used are taken from Doyle & Turner 
(1968). The values of sin 0 corresponding to the wave 
lengths of the most spread sources are shown also 
along the abscissa. As seen from the figures, Cu Ks  
radiation, which was used by Joko & Fukuhara  (1967), 
Huang, Tillinger & Post, (1973) and Kshevetskii & 
Myhailuk (1976), is the most unsuitable. A stronger 
effect is obtained for hard radiation with a small 
wavelength. The dotted lines correspond to the two- 
wave case for a polarization. 

The absolute value of the absorption coefficient 
with account taken of the photoelectric mechanism 
only can be calculated by 

o 

/~ = #~xp (a ° + aQ) -~o + - ~  ~o . (3.8) 

Table 1 shows the calculated values of the minimum 
and following absorption coefficients in the six-wave 
case. The data for the calculation are taken from 
Hildebrandt, Stephenson & Wagenfeld (1973). 

0"559 

0"709 

1"54 

Table 1. The minimum absorption coefficients 
,,(2) ]-/D xp ~ /a220 

I~°/P~ I~e/'ll~ aO/a ° (cm- 1) (cm- 1) (cm- 1) 
2"31 × 10 -4 1-16× 10 -3 0"045 
3"29 × 10 -3 1"71 x 10 -2 0"0406 169 0"645 5"94 
3"28 × 10 -4 2"19 x 10 -3 0"120 
3"13 × 10 -3 2"40× 10 -2 0"026 320 0"976 11-5 
1"77 × 10 -3  3"53 × 10 -2 0"898 
1"51 x 10 -3 4"80× 10 -2 0"0234 354 0"909 14"4 

It should be noted that the data of Table 1 are of 
preliminary character. Indeed, under the condition of 
photoabsorption being so strongly suppressed, the 
TDS and CS processes may play an appreciable part. 
The analysis of the ratio/~//~o for these processes is a 
rather complicated problem. It will be considered in 
a separate paper. We note here only that although 
suppression of these inelastic processes will take place 
it will be not as strong as for the photoeffect. Indeed, 
all the electrons of an atom take part in these pro- 
cesses, in particular the valence electrons. Since the 
density of valence electrons spreads practically over 
all the crystal, no reconstruction of the wave function 
of the field can suppress the processes they take part 
in. 
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